Grazer Diversity, Functional Redundancy, and Productivity in Seagrass Beds: an Experimental Test
نویسندگان
چکیده
Concern over the accelerating loss of biodiversity has stimulated renewed interest in relationships among species richness, species composition, and the functional properties of ecosystems. Mechanistically, the degree of functional differentiation or complementarity among individual species determines the form of such relationships and is thus important to distinguishing among alternative hypotheses for the effects of diversity on ecosystem processes. Although a growing number of studies have reported relationships between plant diversity and ecosystem processes, few have explicitly addressed how functional diversity at higher trophic levels influences ecosystem processes. We used mesocosm experiments to test the impacts of three herbivorous crustacean species (Gammarus mucronatus, Idotea baltica, and Erichsonella attenuata) on plant biomass accumulation, relative dominance of plant functional groups, and herbivore secondary production in beds of eelgrass (Zostera marina), a dominant feature of naturally low-diversity estuaries throughout the northern hemisphere. By establishing treatments with all possible combinations of the three grazer species, we tested the degree of functional redundancy among grazers and their relative impacts on productivity. Grazer species composition strongly influenced eelgrass biomass accumulation and grazer secondary production, whereas none of the processes we studied was clearly related to grazer species richness over the narrow range (0–3 species) studied. In fact, all three measured ecosystem processes—epiphyte grazing, and eelgrass and grazer biomass accumulation—reached highest values in particular single-species treatments. Experimental deletions of individual species from the otherwise-intact assemblage confirmed that the three grazer species were functionally redundant in impacting epiphyte accumulation, whereas secondary production was sensitive to deletion of G. mucronatus, indicating its unique, nonredundant role in influencing this variable. In the field, seasonal abundance patterns differed markedly among the dominant grazer species, suggesting that complementary grazer phenologies may reduce total variance in grazing pressure on an annual basis. Our results show that even superficially similar grazer species can differ in both sign and magnitude of impacts on ecosystem processes and emphasize that one must be cautious in assuming redundancy when assigning species to functional groups.
منابع مشابه
Genotypic diversity and grazer identity interactively influence seagrass and grazer biomass
Despite experimental evidence for effects of primary producer diversity and consumer species diversity on population and community processes, little is known about how diversity at these multiple trophic levels may interact. We conducted a mesocosm experiment to examine the independent and interactive effects of seagrass Zostera marina genotypic diversity and grazer species diversity on seagras...
متن کاملGrazer Functional Roles, Induced Defenses, and Indirect Interactions: Implications for Eelgrass Restoration in San Francisco Bay
Understanding the individual and interactive roles of consumer species is more than academic when the host plant is a subject of intense conservation interest. In a mesocosm experiment, we compared effects of common invertebrate grazers in San Francisco Bay seagrass (Zostera marina, eelgrass) beds, finding that some species (a native opisthobranch, Phyllaplysia taylori; a native isopod, Idotea ...
متن کاملNutrient Enrichment and Food Web Composition Affect Ecosystem Metabolism in an Experimental Seagrass Habitat
BACKGROUND Food web composition and resource levels can influence ecosystem properties such as productivity and elemental cycles. In particular, herbivores occupy a central place in food webs as the species richness and composition of this trophic level may simultaneously influence the transmission of resource and predator effects to higher and lower trophic levels, respectively. Yet, these int...
متن کاملBiodiversity and the functioning of seagrass ecosystems
Biodiversity at multiple levels — genotypes within species, species within functional groups, habitats within a landscape — enhances productivity, resource use, and stability of seagrass ecosystems. Several themes emerge from a review of the mostly indirect evidence and the few experiments that explicitly manipulated diversity in seagrass systems. First, because many seagrass communities are do...
متن کاملHow do nutrient conditions and species identity influence the impact of mesograzers in eelgrass-epiphyte systems?
Coastal eutrophication is thought to cause excessive growth of epiphytes in eelgrass beds, threatening the health and survival of these ecologically and economically valuable ecosystems worldwide. Mesograzers, small crustacean and gastropod grazers, have the potential to prevent seagrass loss by grazing preferentially and efficiently on epiphytes. We tested the impact of three mesograzers on ep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001